首页> 外文OA文献 >Model-based clustering of multivariate binary data with dimension reduction
【2h】

Model-based clustering of multivariate binary data with dimension reduction

机译:基于模型的多维二元数据聚类与维数   减少

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Clustering methods with dimension reduction have been receiving considerablewide interest in statistics lately and a lot of methods to simultaneouslyperform clustering and dimension reduction have been proposed. This workpresents a novel procedure for simultaneously determining the optimal clusterstructure for multivariate binary data and the subspace to represent thatcluster structure. The method is based on a finite mixture model ofmultivariate Bernoulli distributions, and each component is assumed to have alow-dimensional representation of the cluster structure. This method can beconsidered an extension of the traditional latent class analysis model.Sparsity is introduced to the loading values, which produces thelow-dimensional subspace, for enhanced interpretability and more stableextraction of the subspace. An EM-based algorithm is developed to efficientlysolve the proposed optimization problem. We demonstrate the effectiveness ofthe proposed method by applying it to a simulation study and real datasets.
机译:近来,具有降维的聚类方法在统计学中引起了广泛的关注,并且提出了许多同时执行聚类和降维的方法。这项工作提出了一种新颖的过程,可以同时确定多元二进制数据的最佳聚类结构和代表该聚类结构的子空间。该方法基于多元伯努利分布的有限混合模型,并且假定每个组件都具有簇结构的低维表示。该方法可以被认为是传统潜在类分析模型的扩展。稀疏性被引入到载荷值中,产生低维子空间,以增强子空间的可解释性和更稳定的提取。开发了一种基于EM的算法来有效解决所提出的优化问题。通过将其应用于仿真研究和真实数据集,我们证明了该方法的有效性。

著录项

  • 作者单位
  • 年度 2014
  • 总页数
  • 原文格式 PDF
  • 正文语种 {"code":"en","name":"English","id":9}
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号